

智光眼

用户指南

文档版本:01

发布日期: 2023-09-05

目 录

目 录	1
修订记录	4
1. 产品概述	5
1.1. 产品简介	5
1.1.1. 智光眼静态相机	5
1.1.2. 智光眼动态相机	6
1.1.3. 智光眼静态 RGBD 相机	7
1.2. 产品特点	8
1.3. 应用场景	9
1.3.1. 三维点云模型重建	9
1.3.2. 立体定位	9
1.3.3. 物体计数	10
1.3.4. 传送带物体流量监控	10
1.3.5. 物体尺寸测量	10
1.3.6. 物体表面缺陷检测	11
1.4. 外观与接口	12
1.4.1. 产品外观	12
1.4.2. 结构视图	13
1.4.3. 安装孔位置	14
1.4.4. 电源和触发接口	15
1.5. 规格指标	15
2. 硬件安装	18
2.1. 检查到货设备	18
2.2. 安装设备	19
2.2.1. 静态相机安装	19
2.2.2. 动态相机安装	20
2.3. 安装要求	22
2.4. 外部触发信号说明(可选)	23

3.	软件	配置		25
	3.1. 🛚	网络准备		25
	3.1.	1. 单相机设	连接	25
	3.1.	2. 多相机设	连接	25
	3.2. 🕏	安装激光检测	则软件	26
	3.3. 车	次件操作		28
	3.3.	1. 界面介绍	ת בו	28
		3.3.1.1	. 设备界面	28
		3.3.1.2	. 主界面	29
	3.3.	2. 配置流程	星图	31
	3.3.	3. 连接设备	Z	32
	3.3.	4. 相机设置		33
		3.3.4.1	. 设置相机采集参数	33
		3.3.4.2	. 设置相机检测区	34
		3.3.4.3	. 设置相机摆动机构参数	37
		3.3.4.4	. 设置相机工作模式	39
		3.3.4.5	. 设置 RGB 相机参数	40
		3.3.4.6	. 其他设置	40
	3.3.	5. 检测设置		42
		3.3.5.1	. 设置通用检测参数	42
		3.3.5.2	. 设置显示参数	42
		3.3.5.3	. 设置出图参数	43
	3.3.	6. 其他操作	Ę	45
		3.3.6.1	. 修改相机 IP 地址	45
		3.3.6.2	. 保存数据	45
		3.3.6.3	. 查看数据分析	47
		3.3.6.4	. 设置点云加载配置参数	47
		3.3.6.5	. 导入导出配置参数	48
		3.3.6.6	. 静态相机切换成动态相机	48

	3.3.7. 故障排查	.50
	3.3.7.1. 通讯故障	. 50
	3.3.7.2. 检测图像"不全/没有"	50
	3.3.7.3. 3D 图像"拉伸"	.50
4.	附录	. 51
	4.1. 术语解释	.51
	4.2. 第三方软件开发说明	.53
	4.2.1. SDK 函数开发	.53
	4.2.2. TCP 协议开发	.53

修订记录

文档版本	发布日期	修改说明
01	2023-09-05	第一次正式发布。

1. 产品概述

1.1.产品简介

智光眼工业级线激光 3D 相机采用智能终端化设计,可直接在相机端快速生成点云数据模型、RGBD 数据、深度图、灰度图、彩色图等结果数据信息,在高速运动场景的快速检测、抗强光、抗反光、室内外等场景应用中优势突出。相机端可搭载嵌入多种应用智能化算法,应用于立体定位、流量监控、物体测量、物体表面检测等工业场景。

1.1.1. 智光眼静态相机

智光眼静态相机采用双目视差立体成像技术,可对整个面区域进行重建,可直接在相机端标准输出 立体点云数据模型、深度图等。根据场景需求可实现快速物体三维定位、尺寸测量、表面检测、数量统 计等功能,结合机械臂可进行物品抓取、上下料、分拣、焊接控制等多种行业应用。

场景示意图如图 1-1 所示。

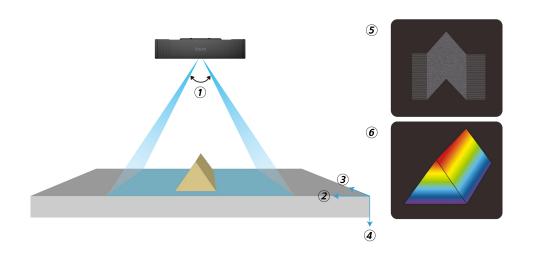


图 1-1 静态相机场景示意图

① 摆动模块左右扫描	④ Z 轴方向
② X 轴方向	⑤ 扫描的轮廓
③ Y轴方向	⑥ 根据相机连续采集的激光线图像生成连续的 3D 数据

1.1.2. 智光眼动态相机

智光眼动态相机利用线激光辅助定位,通过双目立体视觉系统获取物体三维空间坐标,可对物体轮廓进行高精度三维模型重建,并与标准化三维模型进行对比,可进行定位、缺陷检测、尺寸测量等多方面功能应用。

场景示意图如图 1-2 所示。

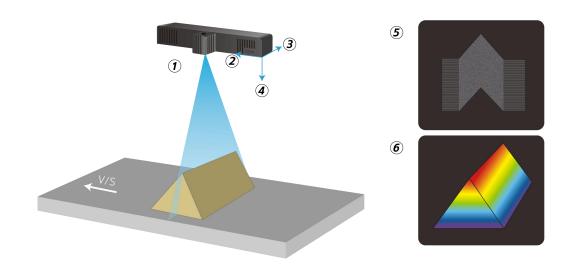


图 1-2 动态相机场景示意图

① 外置激光器发射激光线	④ Z 轴方向
② X 轴方向	⑤ 扫描的轮廓
③ Y轴方向	⑥ 被测物体的 3D 数据图

1.1.3. 智光眼静态 RGBD 相机

智光眼静态 RGBD 相机采用双目立体摄像头、高像素彩色摄像头结构设计,拥有完全构建彩色三维空间信息能力,可直接在相机端输出 RGBD 数据、点云数据、深度图、彩色图像等,应用于机械臂定位抓取、货品识别分类、物体尺寸测量、机器学习检测、色选检测、物体表面检测等应用场景。

场景示意图如图 1-3 所示。

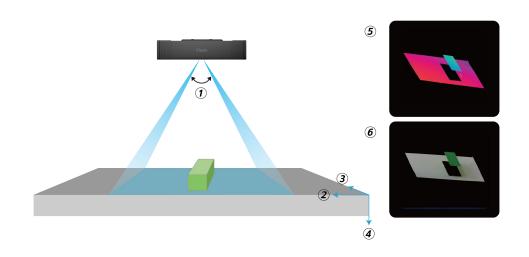


图 1-3 静态 RGBD 相机场景示意图

① 摆动模块左右扫描	④ Z 轴方向
② X 轴方向	⑤ 3D 点云图
③ Y 轴方向	⑥ RGBD 图

1.2.产品特点

智光眼产品具有如下特点:

表 1-1 产品特点

特点	说明		
抗强光、抗反光,	✓ 支持 180000Lux 强光环境下的高精度建模		
适应多种复杂环境	✓ 支持物体表面反光以及抛光材质的无噪点建模		
	✓ 支持物体表面黑色吸光材料的无漏点建模		
高精度、高帧率,	✓ 采用高分辨率图像芯片,纵向分辨率可达 4096pix		
精细化数据管理	✔ 采用全局曝光芯片,每秒线扫帧率最大可达 6000 帧		
	✔ 空间定位精度可达微米级,满足精细化的场景检测需求		
	✓ 内嵌高性能处理芯片,相机前端直接输出结果数据		
终端智能,	✓ 相机出厂内参标定,快速实施部署,方便快捷		
落地实施更加便捷	✓ 直接对接用户工控机或 PLC,实时效率更快更高		
	✔ 可根据不同的安装高度选配相机瞳距		
选型多样,	✔ 可根据不同的扫描视野选配相机镜头		
应对多元化场景需求	✔ 可根据不同的安装方式选配相机材质及大小		
	✔ 可根据不同动态及静态场景选择线扫及面扫工作方式		
大景深、大视野,	✓ 采用大瞳距智光眼相机可达到 2m 扫描景深		
满足各种视野范围应用	✓ 单相机线扫宽度可达 5m		
	✔ 可多相机融合,拓展更大检测视野		
快速标定,灵活多变	✔ 快速手眼标定,保证了相机及机械臂空间坐标系一致		
(八座称定,火 <u>相</u> 少文	✔ 针对于大型件的打磨焊接,相机无需安装在机械臂上,可进行固定安装		
	✔ 可通过多相机拼接的方式来满足更大视野定位需求		
采用防飞溅屏蔽罩,	✓ 航空插头、IP65 防护等级		
更好应对实际工业现场挑 战	✔ 采用防飞溅屏蔽罩,更适合高温、焊接等场景		
小型轻巧化设计,	✓ 最小尺寸 160*82*63mm, 重量 1kg 左右, 适应机械手臂的灵活安装		
便于机械臂安装	✔ 整体结构规整,无特殊形状,便于机械臂运动规划		

1.3. 应用场景

利用智光眼产品,可进行多种应用开发,包括三维点云模型重建、立体定位、物体计数、传送带物体流量监控、物体尺寸测量、物体表面缺陷检测等多种二次应用开发。

1.3.1. 三维点云模型重建

物体与相机通过相对运动后,可实时输出物体表面的三维点云模型。如图 1-4 所示。

图 1-4 三维点云模型重建

1.3.2. 立体定位

可对物体生成的所有点云数据进行高精度的空间坐标及姿态定位,结合机械臂可进行抓取、上下料、 分拣、焊接控制等多种行业应用。如图 **1-5** 所示。

图 1-5 立体定位

1.3.3. 物体计数

可对单独摆放、接触摆放的物体进行实时分割计数。如图 1-6 所示。

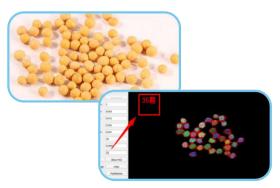


图 1-6 物体计数

1.3.4. 传送带物体流量监控

可对传送带上运动的物体进行实时单位时间的体积数据计算,从而进行物体的流量监控。如图 1-7 所示。

图 1-7 传送带物体流量监控

1.3.5. 物体尺寸测量

可测量物体的长、宽、高、最大体积、积分体积、凹槽深度、阶梯高度等。如图 1-8 所示。

图 1-8 物体尺寸测量

1.3.6. 物体表面缺陷检测

可对物体的表面进行平整度、角度、缺损、凹陷、凸起等表面缺陷检测。如图 1-9 所示。

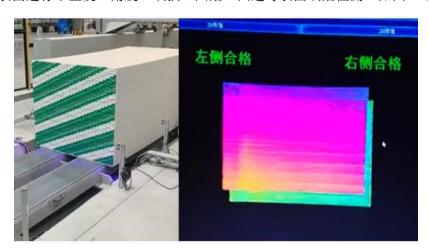


图 1-9 物体表面缺陷检测

1.4. 外观与接口

1.4.1. 产品外观

根据不同的分类和型号,智光眼产品外观如表 1-2 所示。

表 1-2 产品外观

	外观	
相机瞳距	动态相机	静态相机
130mm	VZ-LI-2048-130N3K VZ-LI-4096-130N6K	VZ-AI-2048-130N3K VZ-AI-4096-130N6K VZ-RI-2048-130N3K VZ-RI-4096-130N3K
320mm	VZ-LI-2048-320M3K VZ-LI-4096-320M6K	VZ-AI-2048-320M3K VZ-AI-4096-320M6K VZ-RI-2048-320M3K VZ-RI-2048-320M3K
620mm	VZ-LI-2048-620L3K VZ-LI-4096-620L6K	VZ-AI-2048-620L3K VZ-AI-4096-620L6K VZ-RI-2048-620L3K
	VZ-LI-4030-020L0K	VZ-RI-2048-620L3K VZ-RI-2048-620L3K

① 说明

型号中"LI"表示动态相机,型号中"AI"表示静态相机,型号中"RI"表示 RGBD 静态相机。

1.4.2. 结构视图

智光眼相机的结构视图如图 1-10 所示。示例为 320mm 瞳距的相机,其他瞳距的相机结构与其类似。

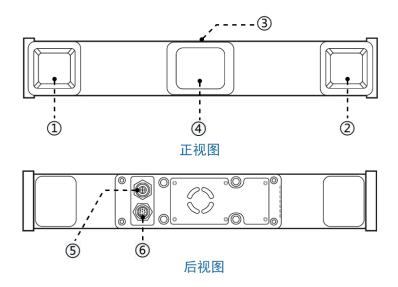


图 1-10 相机结构视图

① 右目镜头	④ 摆动机构+内置激光器安装位置(静态相机)、	
	RGB 镜头安装区域(RGBD 相机)	
② 左目镜头	⑤ 网络接口	
③外置激光器固定位置	⑥ 电源和触发接口	

1.4.3. 安装孔位置

根据不同的瞳距,智光眼相机安装孔位置如图 1-11 所示。

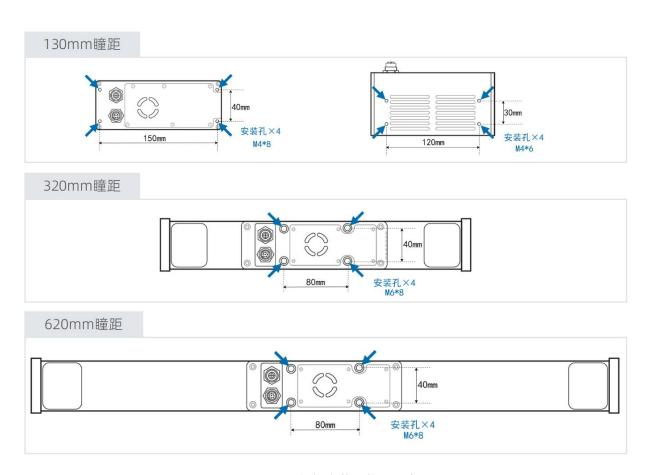


图 1-11 相机安装孔位置示意图

1.4.4. 电源和触发接口

智光眼相机支持外部触发方式进行扫描。根据需要,可选取对应的线缆完成与外部系统的对接。电源与外部触发接口(包括随设备发货的电源线所包含的配套线缆颜色)的详细说明见图 1-12 和表 1-3。

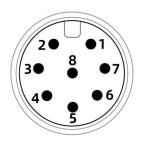


图 1-12 电源与触发接口

表 1-3 电源与触发接口信号说明

编号	配套线缆颜色	说明	
1	红色	电源输入正极(VCC)	
2	_	内部使用	
3	绿色	触发输出信号,暂不支持	
4	黄色	触发输入信号_1	
5	紫色	触发输入信号_2(光电开关输入)	
6	蓝色	触发输入信号_3	
7	棕色	信号地	
8	黑色	电源地 (GND)	

1.5. 规格指标

根据不同的精度和帧率,智光眼产品规格指标请参考表 1-4 和表 1-5。

表 1-4 相机规格指标

相机型号	VZ-LI-2048-130N3K VZ-AI-2048-130N3K VZ-RI-2048-130N3K	VZ-LI-2048-320M3K VZ-AI-2048-320M3K VZ-RI-2048-320M3K	VZ-LI-2048-620L3K VZ-AI-2048-620L3K VZ-RI-2048-620L3K	
相机瞳距	130mm	320mm	620mm	
尺寸(长×宽×高) (* 包含外置激光器)	160×82×63mm * 160×82×99mm	390×89×64mm * 390×89×98mm	690×89×64mm * 690×89×98mm	
重量	1060g	1800g	2600g	
推荐工作距离	300~800mm	600~2000mm	1500~3000mm	
近端扫描视场(长×宽)	220×400mm	400×800mm	1200×2100mm	
远端扫描视场(长×宽)	600×1100mm	1500×2800mm	2500×4200mm	
X 轴分辨率	±0.12mm@300mm ±0.35mm@800mm	±0.24mm@600mm ±0.86mm@2000mm	±0.88mm@1500mm ±1.80mm@3000mm	
Y轴分辨率	±0.21mm@300mm ±0.58mm@800mm	±0.46mm@600mm ±1.52mm@2000mm	±1.14mm@1500mm ±2.28mm@3000mm	
Z 轴分辨率	±0.12mm@300mm ±0.78mm@800mm	±0.17mm@600mm ±1.90mm@2000mm	±0.56mm@1500mm ±2.21mm@3000mm	
深度分辨率		2048×1536	'	
最高帧率		3000 帧/s		
抗强光		180000Lux		
对外接口		千兆网口		
通信方式	SDK 函数调用(C++)、Modbus TCP			
支持系统	Window	Windows (7、10、11)、Linux (仅 SDK)		
激光种类	蓝光(450nm)、红外(850nm、940nm),并可选配其它波长激光器			
电压/功耗	24V/30W			
工作温度	−20° C~70° C			
IP 等级	IP65			
其他	支持多相机融合,出厂内参标定			

表 1-5 超高精度相机规格指标

·	VZ-LI-4096-130N6K VZ-AI-4096-130N3K	VZ-LI-4096-320M6K	VZ-LI-4096-620L6K	
产品型号	VZ-RI-4096-130N3K	VZ-AI-4096-320M6K VZ-RI-4096-320M6K	VZ-AI-4096-620L6K VZ-RI-4096-620L6K	
相机瞳距	130mm	320mm	620mm	
尺寸(长×宽×高)	$160 \times 82 \times 63$ mm	$390\times89\times64$ mm	$690 \times 89 \times 64$ mm	
(* 包含外置激光器)	* 160×82×99mm	* 390×89×98mm	* 690×89×98mm	
重量	1060g	1800g	2600g	
推荐工作距离	200~800mm	600~2500mm	2000~4000mm	
近端扫描视场(长×宽)	110×280mm	450×800mm	1750×2800mm	
远端扫描视场(长×宽)	620×1100mm	1900×3500mm	3000×5000mm	
X 轴分辨率	±0.12mm@200mm	±0.24mm@600mm	±1.12mm@2000mm	
A 抽刀拼 件	±0.35mm@800mm	\pm 0.96mm@2500mm	\pm 1.80mm@4000mm	
Y 轴分辨率	±0.15mm@200mm	±0.23mm@600mm	±0.76mm@2000mm	
1 神刀 州平	±0.29mm@800mm	±0.85mm@2500mm	± 1.52 mm@4000mm	
Z 轴分辨率	±0.05mm@200mm	±0.08mm@600mm	±0.50mm@2000mm	
2 和刀 7/T 十	±0.40mm@800mm	± 1.50 mm@2500mm	±2.10mm@4000mm	
深度分辨率		4096×3088		
最高帧率	6000 帧/s			
抗强光	180000Lux			
对外接口	千兆网口			
通信方式	SDK 函数调用(C++)、Modbus TCP			
支持系统	Windo	Windows (7、10、11)、Linux (仅 SDK)		
激光种类	蓝光 (450nm) 、纟	蓝光 (450nm)、红外 (850nm、940nm), 并可选配其它波长激光器		
电压/功耗		24V/30W		
工作温度		−20° C~70° C		
IP 等级		IP65		
其他	支持多相机融合,出厂内参标定			

2. 硬件安装

2.1.检查到货设备

随设备发货的物品清单如表 2-1 所示。

表 2-1 物品清单

名称	数量	图片示例
相机	1	
相机电源线和适配器	1	
千兆网线	1	
U 盘	1	
激光器	1	
激光器电源线和适配器	1	

① 说明

- 通常情况下,只有动态相机会配置外置激光器,静态相机使用内置激光模块。
- 通常情况下,外置激光器在设备出厂前均已安装完成,不需要现场安装。
- U 盘在安装完成后,请妥善保存,避免丢失。

2.2. 安装设备

根据实际情况,将相机固定在指定位置。相机安装孔的相对位置和安装孔径请参考 1.4.3。

2.2.1. 静态相机安装

静态相机安装示意图如图 2-1 所示。

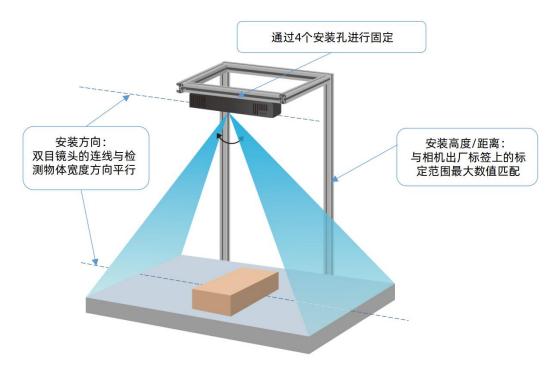


图 2-1 静态相机安装示意图

- 相机安装方向:双目镜头的连线与检测物体宽度方向平行。
- 相机安装高度:根据相机出厂标签上的标定范围取最大数值为安装高度。

① 说明

如安装示意图所示,因为静态相机摆动机构幅度有限,因此检测物体的长边一般垂直于双目镜头的连线,而检测物体的宽边则与双面镜头的连线平行。

参考图 2-2,连接电源线和网线。安装电源线时,请先连相机端,然后再连供电端。

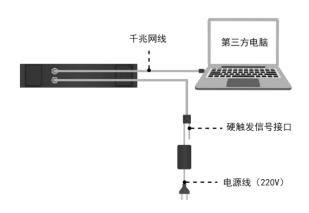


图 2-2 静态相机线缆连接示意图

2.2.2. 动态相机安装

动态相机安装示意图如图 2-3 所示。

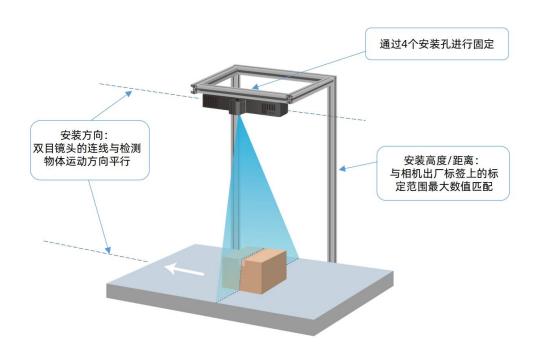


图 2-3 动态相机安装示意图

- 相机安装方向:双目镜头的连线与检测物体(或相机)运动方向平行。
- 激光器方向:激光器打出的激光线与检测物体(或相机)运动方向垂直。
- 相机安装高度:根据相机出厂标签上的标定范围取最大数值为安装高度。

● (可选)激光光线:调节激光头螺纹,使得打到检测物体上表面的激光束最细。

① 说明

如安装示意图所示,对于动态相机,在放置检测物品时,物品长边一般与物品运动方向平行,即物品长边与双目镜头的连线平行。

参考图 2-4,连接电源线和网线。安装电源线时,请先连相机端,然后再连供电端。

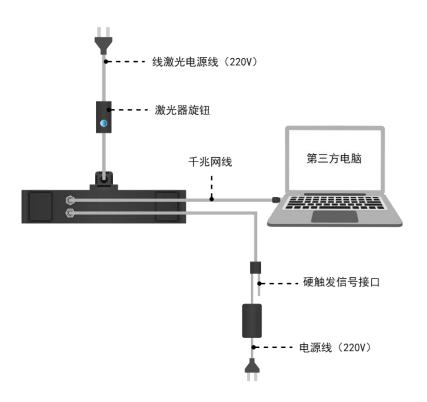


图 2-4 动态相机线缆连接示意图

2.3. 安装要求

本设备为高精度设备,请阅读并遵守表 2-2 的要求。

表 2-2 安装检查和要求表

分类	项目	要求
	温度	相机: -20℃~+65℃ 激光器: 0℃~+50℃
安装	湿度	相对湿度: 5%~95% (无凝露)
女表	空气	切勿在易燃易爆、腐蚀性气体或烟雾、多灰的环境使用本设备。
小児	室外环境	室外安装时,避免阳光直射镜头。
	至外小児 	确保对设备(包括外置激光器)采取了防水、防尘、防盗等措施。
	电源输入	相机电源输入: 24V±4V 电流≥2A 符合接地规范
电源	电极制入	220V 交流电需提供符合国标。
电源	设备上电	安装电源线时,请先连设备端,然后再连供电端。
	断电要求	安装设备和拆除设备时,必须先断开电源。在设备非工作状态下断电。
	高度	请按照设备标签上的标定距离计算高度后进行安装。
设备	方向	确保设备安装后的水平度和垂直度,并确保安装方向的正确。
安装	稳定	确保设备安装牢靠、电缆不松动。确保工作时设备不抖动,以免影响精
		度。
	结构	请轻拿轻放设备,避免使其受到强烈的冲击或震动。
设备	电磁	切勿将设备靠近强磁物品。请做好静电防护并使设备远离电磁辐射。
安全	清洁	请持续保持设备玻璃视窗的清洁。
	完整	切勿擅自拆卸设备,同时确保各类配件的完整。
人员	人身安全	请谨慎操作,避免划伤、砸伤或坠落。
安全	保护	切勿直视激光,同时避免激光照射皮肤。

2.4. 外部触发信号说明(可选)

相机触发模式分为单独触发、连续触发、软触发、硬触发等方式:

- 单独软触发:每次触发完成一次扫描,输出一次数据结果。
- 连续触发:完成不间断的扫描,实时输出检测结果。
- 软触发通过软件实现,采用千兆网线连接设备。
- 硬触发通过外部硬件控制开关传送触发信号实现。

当需要采用硬触发时,根据实际情况,将外部信号连接到相机配套的触发线缆上。电源与外部触发接口详细说明和定义请参考表 1-3 和表 2-3。

属性 功能 颜色 输入范围 驱动能力 名称 红色(Red) 电源输入正极 (VCC) DC 12V 2A 电源线 黑色(Black) 电源地(GND) 黄色(Yellow) 触发输入信号 1 DC 5~12V 2~6mA 绿色(Green) 触发输出信号 DC 5V 10mA 触发输入信号 2 触发线 紫色(Purple) (光电开关输入) DC 5~12V 2~6mA 蓝色(Blue) 触发输入信号 3 DC 5~12V 2~6mA 棕色(Brown) 信号地 透明(shield) 屏蔽层

表 2-3 电源与触发线定义

相机内部硬触发模块原理图如图 2-5 所示。

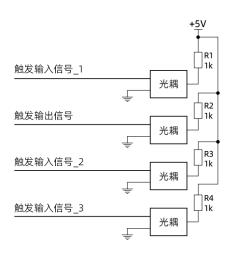


图 2-5 硬触发连接原理图

使用示例请参考表 2-4。

表 2-4 外部触发连接示例

方式	说明	举例
脉冲触发	分别接相机黄色 (触发输入信号 _1)线和棕色(信 号地)。	编码器触发:请将编码器的 A 相(Black)或者 B 相(White)接到相机触发输入信号_1(黄色线)上,编码器的 OV(Blue)接相机的棕色线(信号地)。 ✓ 建议购买电压输出型的编码器,它具有高速响应和良好的抗噪性能,例如欧姆龙(E6B2-CWZ3E)。 ✓ 如果购买的是 NPN 集电极开路输出类型的编码器,例如欧姆龙(E6B2-CWZ6C),就需要在 A、B 相和编码器电源之间上拉电阻(1.5K 左右)。 ✓ 如果购买的是 PNP 集电极开路输出类型的编码器,例如欧姆龙(E6B2-CWZ5B),就需要在 A、B 相和编码器 OV 之间下拉电阻(1.5K 左右)。
电平使能	分别接相机紫色 (触发输入信号 _2)线和棕色(信 号地)。	光电开关触发: 请将光电开关输出信号连接相机紫色信号线(触发输入信号_2)、GND 接相机棕色线(信号地)。

3. 软件配置

3.1. 网络准备

3.1.1. 单相机连接

为确保相机的检测性能, 传输网络必须满足千兆网标准。

相机默认出厂 IP 是 192.168.10.10/24,第三方系统需配置 IP 地址: 192.168.10.X/24(X≠10),例如: IP 192.168.10.180,掩码 255.255.255.0,网关 192.168.10.1。

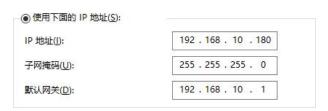


图 3-1 网络设置举例

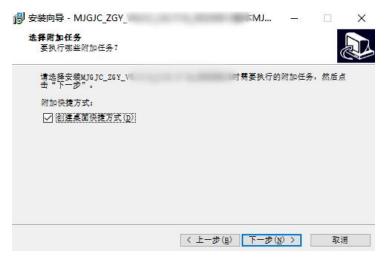
3.1.2. 多相机连接

为确保最佳性能,在多台相机连接到第三方电脑时,每台相机应连接一个单独的网卡。相机和电脑网卡必须处于同一子网中。若是借助交换机进行多台相机连接,电脑网卡和连接的多台相机必须处于同一子网中。

图 3-2 多相机连接示例

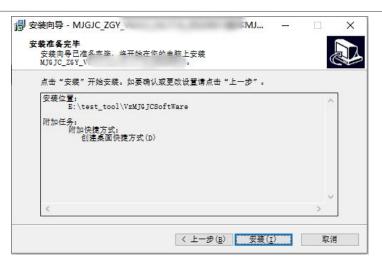
3.2. 安装激光检测软件

背景信息


- 安装软件的电脑最低要求: 17 第六代 CPU 处理器、DDR4 缓存、8G 内存、2G 独立显卡。因性能要求请勿使用虚拟机。
- 防火墙设置:请关闭系统防火墙或者在组网中设置白名单策略允许通过,避免影响软件的 正常使用。
- 安装源文件可在 U 盘的 APP 目录下获取,文件名称: MJGJC_ZGY_XXX....exe。

操作步骤

- 步骤 1 将安装程序 MJGJC ZGY XXX....exe 放置于可执行路径。
- 步骤 2 双击运行,选择安装路径,然后点击【下一步】。



步骤 3 选择附加任务: 勾选创建桌面快捷方式, 然后点击【下一步】。

步骤 4 准备完毕,开始【安装】。

步骤 5 安装成功,然后点击【结束】即可。

3.3. 软件操作

① 说明

- 因产品软件升级,本文档中图标、配置参数等可能与实际呈现有所不同,请以软件实际呈现为准。
- 软件会自动判断所连接的相机类型,显示与之匹配的菜单、配置参数等。

3.3.1. 界面介绍

3.3.1.1.设备界面

运行激光检测程序,首先进入设备界面。设备界面如图 3-3 所示。

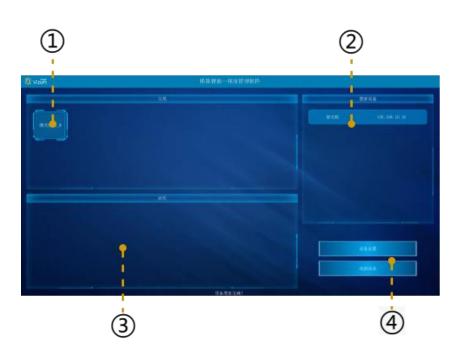


图 3-3 设备界面

设备界面各组成如表 3-1 所示。

表 3-1 设备界面组成说明

名称	说明
① 功能分类	选择当前软件的功能模块。

② 设备列表	当前网络中可以连接的设备列表。	
③ 功能说明	显示所选择的功能模块的补充说明。	
④ 操作按钮	设备设置点击后进入相机网络配置修改界面。	
	连接设备 点击后,连接所选的设备,进入主界面。	

3.3.1.2.主界面

连接设备后,进入主界面。主界面如图 3-4 所示。

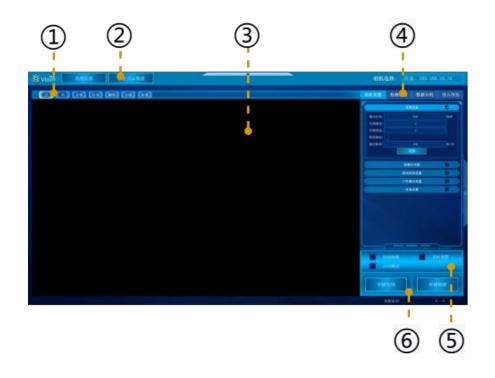


图 3-4 主界面

主界面各组成如表 3-2 所示。

表 3-2 主界面组成说明

名称	说明		
① 快捷按钮区	用于快速切换显示区显示的内容。		
② 顶部按钮	系统信息查看相机状态和软硬件配置信息。		
	保存点云数据 3D 检测完毕后,保存当前扫描的三维数据。		
③ 显示区	显示 2D、3D 等检测结果。		
	相机设置设置采集参数、检测区、摆动机构等参数。		
④ 分类菜单	检测设置 设置扫描速度、显示等参数。		
	数据分析 进行3D数据分析功能设置、单帧检测激光线数据显示。		
	导入导出进行配置保存用于不同场景加载使用。		
⑤ 检测操作	□实时采图 勾选后,连续实时采集 2D 图像并显示。		
	□自动检测 勾选后,连续采集点云数据并显示。		
	□自动测试 勾选后,连续进行静态点云扫描测试。		
	(此功能仅连接静态相机时有效)		
⑥ 单帧操作	单帧取图 获取一帧相机的 2D 图像并显示。		
	单帧检测 获取一帧 3D 激光线数据并显示。		

3.3.2. 配置流程图

相机配置流程图请参考图 3-5。

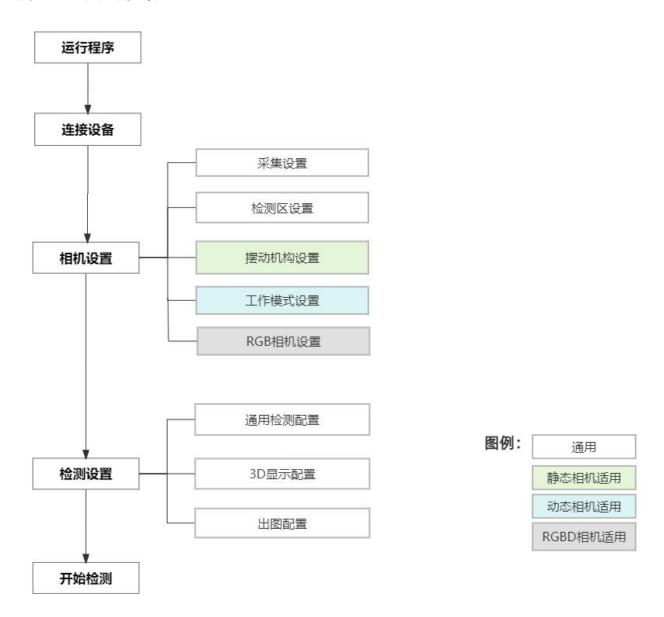


图 3-5 相机配置流程图

3.3.3. 连接设备

运行激光检测程序,依次点击【项目分类(激光检测_M)】 > 【设备(当前设备)】 > 【连接设备】,进入软件主界面。

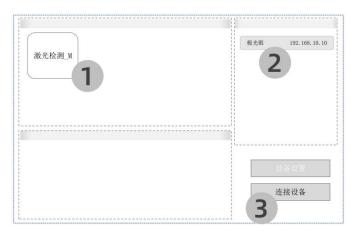


图 3-6 连接设备操作图

① 说明

在设备列表中:

- 带摆动机构的(静态相机)显示为"极光眼"。
- 不带摆动机构的(动态相机)显示为"智光眼"。

3.3.4. 相机设置

选择主界面右侧分类菜单中的 相机设置 ,进行相机参数的设置。进行参数设置时,确保相机已退出检测状态。

3.3.4.1.设置相机采集参数

操作步骤

步骤 1 主界面 > 相机设置 > 【采集设置】。参数说明请参考表 3-3。

步骤 2 设置完成,点击【应用】保存。

表 3-3 采集参数说明

参数名	参数说明	取值范围
曝光时间	曝光时间越大,图像越亮。	20~1000000 微秒
左侧增益	左目镜头图像增益设置,数值的越大图像越亮。	1~255
右侧增益	右目镜头图像增益设置,数值的越大图像越亮。	1~255
	设置相机输出的最大帧率。	
输出帧率	勾选【帧率测试】, 软件将自动计算出最大帧率,	
	并填入【输出帧率】。	

参数检查

相机采集参数的检查方法如下:

● 可先设置曝光调至 500, 左右增益为 2。然后通过调整曝光时间和增益来调整检测目标表面的激光线的亮度, 如图 3-7 所示。

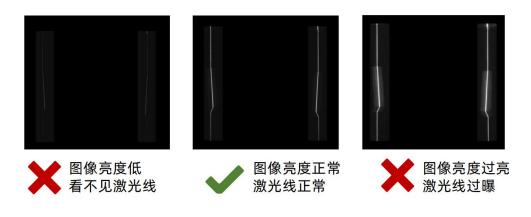


图 3-7 曝光时间调整

● 点击 单帧检测 。如果显示区检测的目标上出现连续的激光线,说明参数设置合理,如图 3-8 所示。

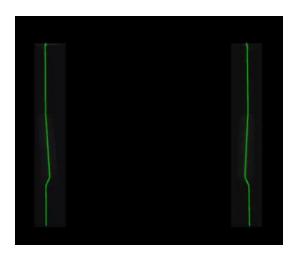


图 3-8 曝光正常示意图

3.3.4.2.设置相机检测区

操作步骤

步骤 1 主界面 > 【检测区设置】。参数说明请参考表 3-4。

表 3-4 相	检测区设置参数说明
---------	-----------

参数名	参数说明	取值范围
图像校正	在鼠标圈选检测区域的时候,如果勾选此参数,则 所选区域与真实图像保持一致。满足所见即所得, 一般需要勾选。	_
全图高度	动态相机自动 ROI 生成时,如果勾选此参数,会自动将生成 ROI 高度设置为全图高度。	_

步骤 2 可以选择【手动 ROI 设置】或者【自动 ROI 设置】。当相机为静态相机时,可直接点击【设置全图】,将全图设为检测区(检测区高为最大值)。

手动 ROI 设置

- 步骤 1 勾选【实时采图】, 获取当前 2D 图像, 用于设置检测区时作为参考。然后取消勾选, 退出实时采图状态。
- 步骤 2 使用鼠标圈选 ROI 的范围(鼠标按住左键从左上方拉至右下方),可依次重复设置左右 ROI 的范围。

回 说明

- 以被检测物体为三棱柱为例: 圈选时,保证在三棱柱上方的激光线位于检测区域的中部,如图 3-9 所示。
- 如果检测场景中有多个目标时,需以检测目标物的最大高度进行设置。
- 最小 ROI 区域为满足线激光扫描到物体全部轮廓的最小视野。
- 在满足其他条件时,ROI圈选范围的宽度越小,检测帧率越高。

步骤 3 点击【设置 ROI】,确认检测区的范围。

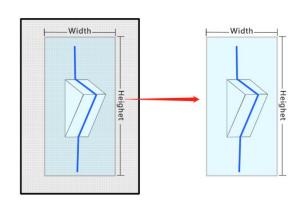
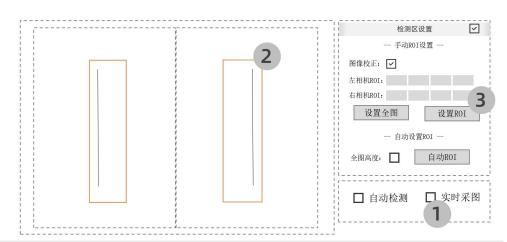



图 3-9 手动 ROI 圈选示意图

动态相机设置技巧

- 步骤 1 勾选【实时采图】,获取当前 2D 图像,用于设置检测区时作为参考。然后取消勾选, 退出实时采图状态。
- 步骤 2 使用鼠标圈选,分别调整左右 ROI 的范围。
- 步骤 3 击【设置 ROI】,确认检测区的范围。

① 说明

- 检测物体高度固定不变时,ROI 高度覆盖物体待检范围,宽度覆盖激光线范围即可。
- 检测物体高度不一时,相对于激光线的位置,ROI 圈选如图所示:
 - 左目 ROI 方框范围的右侧略宽。
 - 右目 ROI 方框范围的左侧略宽。

其原理如下: 检测物体越高(离相机距离越近),其有效成像范围越向左右相机的中间位置靠近,如图 3-10 所示。因此,左右 ROI 需要向中间扩大一定范围,以确保对所有高度物体都能被检测到。

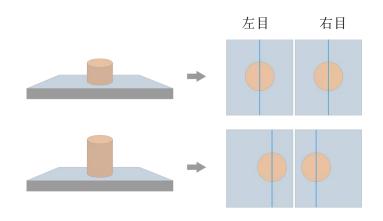


图 3-10 物体高度对 ROI 的影响

自动 ROI 设置

点击【自动 ROI】,程序根据当前检测区域的高度自动生成检测区域。

3.3.4.3.设置相机摆动机构参数

操作步骤

步骤 1 主界面 > 【摆动机构设置】。参数说明请参考表 3-5。

步骤 2 通过填写参数或者实时控制进行参数设置。实时控制说明请参考表 3-6。

步骤 3 设置完成,点击【应用】保存。

表 3-5 摆动机构参数说明

参数名	参数说明	取值范围
是否使能	此开关决定是否启用摆动机构。 ✓ 启用:静态相机功能。 ✓ 关闭:作为动态相机使用时,固定激光线位置。	1
激光线亮	此开关用于控制激光器是否打开。	_
激光亮度	调整激光的亮度。	暗、较暗、正常、 亮
扫描模式	✓ 单次:相机按照设定的角度范围进行单次扫描。 ✓ 循环:相机按照设定的角度范围进行多次扫描。	单次、循环
摆动方向	✓ 正向:指相机从开始角度扫到结束角度✓ 负向:指结束角度到开始角度	正向、负向

最近距离	相机到检测物体表面最小距离 - 50mm。如图 3-11 所示。	10~10000 毫米
最远距离	相机到检测物体基准面距离 +50mm。如图 3-11 所示。	20~10000 毫米
摆动速度	设置摆动机构的摆动角速度。	1~192 度/秒
端点时间	设置摆动到两侧端点,停留的时间。	500~10000 毫秒
开始角度	设置摆动机构开始摆动的角度。	0~60 度
结束角度	设置摆动机构停止摆动的角度。	0~60 度
归零角度	设置停止摆动后,摆动机构固定停留的角度。 0~60 度	
角度范围	显示当前设备支持的角度范围。	
速度范围	显示当前设备支持的速度范围。	

表 3-6 摆动机构控制说明

按钮名	说明
向左旋转/向右旋转	设置摆动机构向左/右方向旋转 1°。
转到开始	设置摆动机构旋转到开始角度。
转到	设置【旋转角度】,进行旋转,并旋转到所设置的角度。
设为开始	将当前角度设置为【开始角度】。
设为结束	将当前角度设置为【结束角度】。

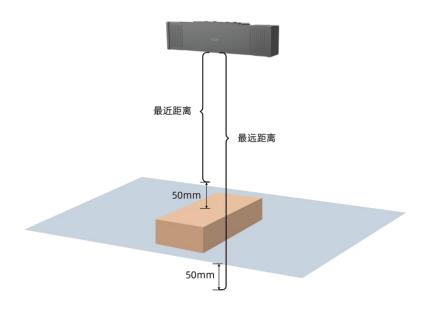


图 3-11 最近和最远距离参数设置示意

3.3.4.4.设置相机工作模式

操作步骤

步骤 1 主界面 > 【工作模式设置】。参数说明请参考表 3-7,典型场景设置 请参考表 3-8。

步骤 2 设置完成,点击【应用】保存。

表 3-7 工作模式参数说明

参数名	参数说明	取值范围
使能模式	非使能模式用于程序自动检测或者脉冲触发的场景,使 能模式用于相机硬触发和软触发的场景。	_
触发模式	设定相机当前的触发模式。 ✓ 主模式:自动检测场景时选择。 ✓ 上升沿/下降沿:脉冲触发时根据实际情况选择。 ✓ 其他模式:内部使用。	主模式、上升沿、下降沿、其他模式
偏移模式	✓ 速度偏移:根据实际物体运动速度进行偏移。 ✓ 编码器偏移:接入编码器适配使用。 ✓ 固定偏移:使用固定偏移方式,设定固定偏移的步 长,单位为 mm。	速度偏移、编码器偏移、固定偏移
旋转轴半径	【编码器偏移】下,填写连接编码器电机旋转轴半径。	_
编码器精度	【编码器偏移】下,输入编码器转动速率。	_
双向编码器	【编码器偏移】下, ✓ 若未勾选,程序按照编码器脉冲触发检测数据。 ✓ 若勾选,程序在接收编码器反向脉冲时不输出数据同时记录反向移动距离,在接收编码器正向脉冲时程序会检测正向移动距离,如果正向移动距离大于记录反向移动的距离则输出点云数据。	选、不选
使能类型	【使能模式】勾选下,选择外部触发的类型。	硬使能、软使能
使能电平	【硬使能】下,选择对应的触发电平。	高电平、低电平
触发分频	设置相机检测频率。例如:设置为 2,那么检测频率等于相机收到触发频率的 1/2。	1~100
触发输出	用于多相机主从模式。主相机需开启触发输出设置。	无、主从触发、手 动触发、回环触发
触发消抖	供特殊项目使用。通常无需勾选。	_

场景	使能模式	使能类型	触发模式	偏移模式	相关参数
软件自检测	不勾选	_	主模式	速度偏移	无
外部软触发	勾选	软使能	主模式	速度偏移	无
外部脉冲触发	不勾选	_	上升沿/ 下降沿	编码器偏移	旋转半径 码盘精度
外部电平使能	勾选	硬使能	主模式	速度偏移	使能电平

表 3-8 按场景模式设置参考

3.3.4.5.设置 RGB 相机参数

操作步骤

步骤 1 主界面 > 【相机设置】 > 【RGB 相机设置】。参数说明请参考表 3-9。

步骤 2 设置完成,点击【应用】保存。

表 3-9 RGBD 相机参数说明

参数名	参数说明	取值范围
是否使能	设置是否启用 RGB 相机。	_
白平衡	设置是否启用自动白平衡。	_
自动曝光	设置是否启用自动曝光。	_
曝光时间	手动设置相机的曝光时间,使用前先检查自动曝光功能是否关闭。 20~1000000 微秒	
图像增益	设置图像的增益。 0~255	
期望亮度	根据 RGB 图像和实际图像对比,选择合适的期望值。根据成像结果调整: 暗、正常、如果图像比实际暗,这里选择"亮"。 如果图像比实际亮,这里选择"暗"。 自定义 也可选择"自定义"微调。	

3.3.4.6.其他设置

操作步骤

步骤 1 主界面 > 【其他设置】。参数说明请参考表 3-10。

步骤 2 设置完成,参数自动生效。

表 3-10 其他参数说明

参数名	参数说明	取值范围
算法增强	用于调整检测参数将检测盲区进行激光线填充。	_
多层检测	用于设置高度差引起的多激光线检测。	_
栅格化	用于设置栅格模式数据。	

3.3.5. 检测设置

选择主界面右侧分类菜单中的 检测设置 , 进行检测参数的设置。

3.3.5.1.设置通用检测参数

操作步骤

步骤 1 主界面 > 检测设置 > 【通用检测设置】。参数说明请参考表 3-11。

步骤 2 设置完成,点击【应用】保存。

表 3-11 通用检测参数说明

参数名	参数说明	取值范围	
扫描速度	根据检测物体的实际速度进行设置,静态相机 场景不涉及。	0~10000 毫米/秒	
工作范围	根据实际检测的物体设置工作范围。说明:相机左前置玻璃板为基本面。	0~10000 毫米	
扫描超时	设置检测时长,0为无限时长。	0~1000000 毫秒	
目标材质	根据反光程度设置检测物体的材质。 选择为【深色物体】后,可继续选择:灰色物体、深灰色物体、黑色物体或自定义检测门限。 检测门限取值 0~255。	正常物体、反光物体、深色物体	
目标类型	根据实际情况选择被检测物体的类型。	通用、细丝、自定义	
扫描方向	根据实际情况,设置 3D 检测数据的水平方向。	正向、负向	
图像方向	根据实际情况,设置 3D 检测数据的垂直方向。	向上、向下	

3.3.5.2.设置显示参数

操作步骤

步骤 1 主界面 > <mark>检测设置</mark> > 【显示配置】。参数说明请参考表 **3-12**。

步骤 2 设置完成,点击【应用】保存。

42

表 3-12 显示参数说明

参数名	参数说明	取值范围
显示地面	设置 3D 显示结果是否需要显示基本面。	_
坐标轴	设置 3D 显示结果是否需要显示坐标轴。	_
显示缓冲	设置扫描完成后是立即停止还是将缓冲中的 数据全部显示完再停止。	_
显示切换设备数据	设置右上角设备选择栏切换不同的设备时, 是否显示目标设备之前的数据(例如之前扫 描的点云或采集的图像)。	_
使能点选	设置是否允许在 3D 点云视图上点选目标点 并显示其坐标。	_
自动颜色	设置是否自动根据当前采集的点云数据格式 自动设置显示颜色(RGBD 数据显示 RGB 颜 色,其他点云伪随机色)。	_
颜色模式	设置 3D 显示结果的颜色模式。	固定颜色、全 局梯度、单线 梯度、跟随数 据
帧率调整	勾选后为自动显示模式;取消勾选为手动显示设置,需设置参数【抽样间隔】。例:设置2,即每隔两条激光线显示一条。	_
3D 点大小	设置点的大小。	1~10
3D 线宽	设置 3D 线与线之间的宽度。	0~100
颜色梯度	设置颜色梯度值,数值越大同一高度的变化 程度越大。	0~1000
3D 显示	设置 3D 显示结果。	点云、轮廓
点云距离	设置连续扫描时,3D 视图中允许连续显示的 点云最大距离,超出距离后自动清除前面显 示的数据,保持界面上的点云长度不超过设 定值。	1~100000 毫米

3.3.5.3.设置出图参数

操作步骤

步骤 1 主界面 > 检测设置 > 【出图配置】。参数说明请参考表 3-13。

步骤 2 设置完成,点击【应用】保存。

表 3-13 出图参数说明

参数名	参数说明	取值范围
出图类型	选择动态图或静态图的出图类型。 静态图配置时,点击【生成目标图】可以实 时生成静态图文件。	无、深度图、 灰度图
基线模式	启用是否以标准面以上为检测目标物。此模式多用于U型皮带;若启用,先勾选然后依次点击【单帧检测】、【设置基线】即可设置成功。	_
XY 轴比例	支持自动或者自定义方式设定;点击【获取 X/Y 比例】,程序会根据当前设置参数自动计算;自定义方式请根据物体占据视野的像素 占比自定义设置。	0.1~100 毫米/ 像素
图像宽度	设置 2D 图像输出的宽度。	10~5000 像素

3.3.6. 其他操作

3.3.6.1.修改相机 IP 地址

操作步骤

步骤 1 设备界面 > 设备设置 , 进入相机网络配置修改界面。

图 3-12 网络配置

- ▶ 静态 IP: 在圈中的红色区域内进行 IP 修改, 使其与第三方系统网络可达。
- ▶ 动态 IP: 勾选黄色指针指向处"使能 DHCP", 然后重启相机即可。

步骤 2 设置完成,点击【配置网络】保存。

□ 说明

【绑定设备】、【解绑设备】为软件匹配星光眼产品使用的功能。智光眼产品无需关注这两个操作按钮。

3.3.6.2.保存数据

保存 2D 图像

支持保存深/灰度图和相机左右双目图像。在 2D 界面进行检测目标物体,连点两下【自动检测】即可保存图像文件。如图 3-13 所示。

- 文件保存在在安装路径文件夹 "LaserDetectResult"中
- 支持保存深/灰度图和相机左右双目图像

图 3-13 2D 图像文件

保存 3D 数据

支持保存类型 PURETXT、TXT、PCD、LAS。

- 自动检测状态下,点击【保存点云数据】,会将当前扫描到的 3D 图像点云进行存储。
- 实时存储:进入【加载点云存储配置】中,分别勾选"实时存储"和选择需要的"保存类型"。 然后点击【应用】。

数据存储于应用安装路径文件夹"LaserDetectResult"中,TXT 数据说明:

■ LineNum: 激光线条数

■ ScanSpeed: 扫描速度

■ PointAdjust: 是否进行了偏移

■ MaxTimeStamp: 最大的时间戳值_1 时间戳对应的以 ns 为单位的时间值

■ Line 线号 时间戳 点个数

■ 三维数据(X、Y、Z)和左右图像的 X、Y 数据

图 3-14 3D 数据文件

3.3.6.3.查看数据分析

背景信息

可以选择不同类型的数据进行显示,然后进行数据分析。此功能需要进入软件 Debug 模式。一般场景不需要使用。

操作步骤

3.3.6.4.设置点云加载配置参数

操作步骤

步骤 1 主界面 > 与入导出 > 【点云加载存储配置】。参数说明请参考表 3-14。 步骤 2 设置完成,点击【应用】保存。

47

PCD、LAS

POSITION

XYZRGB

参数名	参数说明	取值范围
点云加载	勾选后可加载点云文件,查看点云图像。	_
实时存储	勾选后,系统实时存储 3D 点云数据。	_
保存类型	设置保存的文件类型。	PURETXT、TXT、

表 3-14 点云加载存储参数说明

3.3.6.5.导入导出配置参数

操作步骤

步骤 1 主界面 > 「导入导出」 > 【配置参数导入导出】。

加载类型丨设置加载文件的文件类型。

步骤 2 根据实际需要,单击按钮进行操作。各操作的说明请参考表 3-13。

操作 操作说明

导入文件配置 选择以前保存的配置文件,导入系统。

导出文件配置 将当前系统的各项参数和设置,保存至配置文件。

恢复出厂设置 将当前系统的各项参数和设置,恢复到出厂时的初始值。

恢复运行配置 恢复到以前保存过的运行配置。

设为运行配置 保存当前系统的各项参数和设置,作为运行配置。

表 3-15 导入导出操作说明

3.3.6.6.静态相机切换成动态相机

背景信息

智光眼静态相机为动静态一体相机,无需更换硬件,即可切换动态相机和静态相机的功能。

操作步骤

步骤 1 主界面 > 相机设置 > 【摆动机构设置】。

- 步骤 2 点击【设为动态模式】,将相机设为动态模式。相机会自动根据【最近距离】、【最远距离】设置 ROI。激光器发射激光线,并与检测物体(或相机)运动方向垂直。
- 步骤 3 根据实际情况,对 ROI 进行微调。如果没有在检测区域看到激光线,请参考 3.3.4.2 进行调整。

3.3.7. 故障排查

3.3.7.1.通讯故障

搜索不到相机: 首先检查相机是否正常上电,然后判断相机通讯状态是否可达,若可达请检查下网络策略是否有拦截,若以上操作设置没有问题,请使用 U 盘中的"运行环境检测工具"进行检查;若检查没问题请联系技术支持人员。

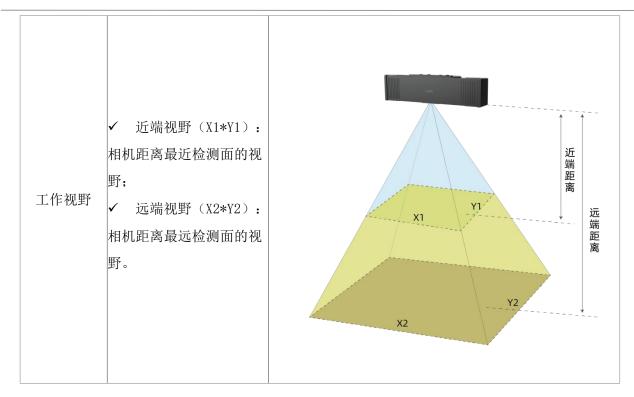
3.3.7.2.检测图像 "不全/没有"

请按照以下步骤针对此问题一一排除:

- 检测区域设置不对:请将检测不全物体放置激光线下面,然后依次点击【相机设置】 > 【检测区域设置】,通过【实时采图】查看摆动的激光线是否完全打在物体上面。
- 曝光设置不对:请将检测不全物体放置激光线下面,然后依次点击【相机设置】 > 【采集设置】 查看打在物体上面的激光线亮度进行调节。
- 增益设置不对:曝光设置 1000 微秒以上,请依据打在物体上的激光线图像亮度进行调节。
- 工作范围设置小:请依次点击【检测设置】 > 【通用检测设置】将"工作范围"根据实际检测场景进行调整。

3.3.7.3.3D 图像"拉伸"

通过 3D 检测结果发现图像和真实的物体有拉伸,请检查物体移动速度设置;点击【检测设置】模块进行 3D 显示设置:移动速度设置为 0 即可。


4. 附录

4.1. 术语解释

图 4-1 术语解释

名称	解释	图例
瞳距	指两个镜头中心之间的距 离。	瞳距
扫描角度	即工作角度, 指摆动模块横向(X方向) 转动的角度。	
激光线角度	即相机纵向所看角度,指镜头所看纵向(Y方向)激 光线上下最远的点和相机 中心形成的夹角。	
采集时间	即摆动模块工作的时间, 指摆动模块完成扫描角度 的时间。	

4.2. 第三方软件开发说明

面向智光眼程序开发有两种方式,一种是基于 SDK 调用相关函数进行相机操作和数据获取,另一种是基于 TCP 协议依据 "主站-从站"进行开发交互。

4.2.1. SDK 函数开发

显示方式: 第三方系统显示。

实现方式:基于 SDK 调用函数。

为了高效对接请按照以下步骤进行:

- (1) 通过激光检测软件将相机参数调试完毕。
- (2) 关闭软件。使用我司提供的 SDK DEMO 编译运行,参考 DEMO 实现的代码逻辑。
- (3) 结合实际业务根据我司据提供的《SDK 接口说明》文档进行二次开发。

4.2.2. TCP 协议开发

显示方式: 第三方终端读取显示。

实现方式:基于 TCP 协议。

说明:根据提供的TCP协议文档建立连接获取数据。